5G技术4G化中3D MIMO的建设场景及实际应用效果

作者:刁兆坤 责任编辑:吕萌 2018.10.11 13:49 来源:通信世界全媒体

通信世界网消息(CWW)随着4G用户的迅速增长,4G网络正面临着需求巨大、网络热点更热、用户体验诉求强烈、特殊场景深度覆盖困难等问题,3D MIMO通过显著增加收发天线(通道),获得更高的分集、阵列、空间复用、干扰抑制增益,从而显著地提升系统性能。

MIMO技术对于传统的单天线系统来说,能够大大提高频谱利用率,使得系统能在有限的无线频带下传输更高速率的数据业务。现网TD-LTE 8天线宏站可以支持4流空分复用,而3D MIMO引入大规模阵列天线技术,使得空域16流、32流或更多流复用成为可能。在热点区域,用户数多且用户在三维空间分布范围大,结合精确的信道估计、用户配对算法,即可实现空域16层及以上的视频资源空分复用,让无线网络的频谱效率再上一个台阶。

3D MIMO的技术优势

在下行精准波束赋形方面,3D MIMO利用空间信道的强相关性以及波的干涉技术,通过调整天线阵元的输出,产生强方向性的辐射方向图并将其主瓣指向终端,从而提高接收信噪比、减小干扰,增加系统的吞吐量和覆盖范围。3D MIMO下行采用更多天线进行波束赋型,空间赋型波束更窄、能量更集中,能够有效提升赋型增益并增加空间传输的流数。

3D MIMO水平天线通道数比8通道宏站提升1倍,垂直天线通道数比8通道宏站提升4倍,在同等波长的条件下,3D MIMO的主瓣波束宽度更窄;3D MIMO现在下行支持8流的空分复用,上行支持4流空分复用,相比现在的8通道天线,下行和上行的小区流量提升4倍;更窄波束和更高增益,可以实现更高的波束赋型增益,并且降低干扰。8天线、3DMIMO与大规模天线陈列对比见图1 。

在上行增强接收分集方面,3D MIMO通过上行使用更多接收天线,可提供更多上行接收信号样本,进行更精确的信道估计,从而提升接收机性能和抗干扰能力。还可通过高阶空域滤波,精确估计上行空间信道,通过选择最优的合并权值,提升用户信号信噪比,增强接收性能。

3D MIMO可实现波束三维可调,通过大规模天线振子的应用,除在水平方向外,在垂直方向上也分为多个通道进行赋形处理,从而同时具备水平和垂直方向的波束调节能力,通过更多的空分维度和多流技术,同时服务更多用户,提升频谱效率和小区吞吐量。在宏覆盖场景方面,3D MIMO可将广播波束配置为水平半功率角为65°,垂直半功率角20°。在高层覆盖场景方面,可将广播波束配置为水平半功率角为20°,垂直半功率角65°。

1539237222968079078.png

图1 三种天线对比

3D MIMO的技术优势在于可同时提升覆盖和容量,降低高频建网成本。目前的4G系统,由于工作在较低频段,难以在终端中大幅增加天线数量,从而导致终端峰值速率提升能力受限;主要是通过空间分集、空间复用和波束赋形等技术,重点挖掘增强基站覆盖、提升基站容量(吞吐量)和提高服务质量(服务用户的速率,尤其是边缘用户)等方面的能力。3D MIMO正好解决了特定区域的这些问题。3D MIMO的技术优势见图2。

1539237222911079168.png

图2 3D MIMO的技术优势

3D MIMO的建设需求和场景分析

由于大规模阵列技术的引入,3D MIMO系统能够在三维空间产生灵活指向用户的非常窄的波束,这种极窄波束意味着在有效抑制对复用用户干扰、不损失服务用户主瓣方向能量的前提下,在整个三维空间,3D MIMO的大规模天线系统可提供最大复用层数,可实现天线数量的空分复用。

从技术标准的角度,3D MIMO实现16流空分复用,不需要定义新的标准规范,完全兼容现网4G终端,即基于现网终端就可以实现多用户配对,共享信道资源。

从技术需求和其适应的场景来看,3D MIMO适用于高楼覆盖、高负荷和高干扰等应用场景,如图3所示。

1539237222722026480.png

图3 3D MIMO场景分析

从网络发展趋势看,特别是近两年,无线网络发展呈现出热点更热的趋势,20%的区域已经承载60%~70%的流量。城区金融街、CBD、重要商业中心、高校等核心区域,一方面用户集中、业务需求量大,另一方面存在高楼遮挡、深度覆盖不足等问题。3D MIMO技术提供更高维度的空分复用、更强的波束赋形能力,可有效应对这些复杂场景。3D MIMO利用空分复用技术,可支持16个终端共享相同的时间、频率资源,将频谱效率提升4~6倍,有效缓解流量激增和频谱受限之间的矛盾。

3D MIMO的工程实现和应用

TDD不需要双工器,节省导频开销,终端无需改动,已率先商用,TDD在实现3D MIMO上,通过发挥制式及信道互易性优势,可降低产业链综合成本30%以上,TDD 3D MIMO性能优势见图4。

1539237222663010679.png

图4 TDD 3D MIMO性能具优势

以华为的3D MIMO解决方案为例,其整体解决方案如图5所示。

1539237222558032982.png

图5 华为3D MIMO解决方案

3D MIMO天线和8T8R安装对比如图6所示。

图6 安装对比图

3D MIMO站点的规划和商用效果分析

针对4种不同的应用场景,可根据紧急程度、价值高低,对3D MIMO的规划结果进行优先级筛选,滚动规划、分步实施。其总体规划思路如图7所示。

1539237222002077058.png

图7 总体规划思路

以深圳某3D MIMO站点为例,实际商用实施和效果情况如图8所示。

1539237221945061621.png

图8 深圳某城市3D MIMO建设

其覆盖效果评估如图9所示。

1539237221896095809.png

图9 具体测试情

定点速率测试结果如图10所示。

1539237221422095184.png

图10 定点测试结果

从话统数据来看,小区平均用户和流量整体提升明显。

1539237221420042463.png

图11 性能提升明显

上行干扰指标改善1~2dB,终端发射功率下降。

图12 干扰改善效果明显

3D MIMO是把5G技术应用到4G网络的典型案例和成功实践,相比现有4G技术,采用3D MIMO技术的小区下行和上行平均吞吐量分别是现有4G基站的2~5倍和2倍,既有效解决了4G存在的“三高一限”严重制约用户体验的现实问题,也将为移动互联网应用的规模发展提供有力的技术支撑,可极大满足5G时代用户密集区域的流量业务需求。4G网络5G化,5G技术4G化,使新业务在现有LTE网络上应用,保护当前的网络基础设施投资,投资4G即投资5G成为包括中国移动在内越来越多运营商的共识。

3D MIMO作为5G Massive MIMO技术应用于4G网络的解决方案,具有提升容量、增强覆盖、降低干扰等诸多突出优点,借助大规模阵列天线带来的三维波束赋型能力,提供更多业务流,相对目前TD-LTE 8T8R网络频谱效率提升数倍,面向5G目标,布局4G演进,构筑持续竞争优势,更好地服务广大用户。


发表评论请先登录
...
CWW视点
暂无内容