如何解决AI的大数据困境?杨强提出联邦迁移学习

作者:小羿 责任编辑:田小梦 2018.07.30 13:32 来源:网易智能

通信世界网消息(CWW)今天上午,2018中国人工智能大会在深圳举行。会上,国际人工智能联合会(IJCAI)主席、AAAI/ACM/IEEE Fellow、香港科技大学教授杨强发表了题为《AI面临的挑战和迁移学习所带来的机遇》的演讲,谈到了AI发展遇到的大数据的困境以及解决办法。

1532929126384053868.jpg

杨强表示,我们正处于大数据驱动的AI时代,人们将工作数字化,然后通过人工智能自动化,从而提高效率。但是,现在我们越来越多的遇到了数据的困扰,很多企业的数据都是孤岛没有办法打通,同时受制于欧盟GDPR等法案的制约,增大了这种困境。

杨强教授具体讲解了大数据面临的两大困境。

一大困境是面临隐私、安全和监督。以欧盟的GDPR为例,GDPR明文规定了用户的“被遗忘权”,对使用自动化模型决策全面禁止,这对机器学习有重大影响,因为让用户同意使用并不容易,使用自主决策合法要满足三点,包括合同处理的必要性、其他法律另行授权,数据主体明确同意。

在数据隐私的监管的大趋势下,解决这一问题并不容易。杨强教授提出了联邦迁移学习思路,这种思路希望建立起机器学习的企业生态,各个企业自有数据不出本地,模型效果不变,在不违规的情况下建立一个虚拟模型。杨强教授表示,利用联邦迁移学习加密技术,协同建模,学习模型过程不交换用户数,不侵犯隐私。

另一大困境是小数据的困境,杨强教授提出了迁移学习,并列举了跨领域舆情分析的案例。

杨强最后表示,面对数据发展的困扰,希望利用联邦迁移学习技术建立联合建模解决方案,克服数据障碍。在法律规范的基础上,各个参与方理解一致的共识机制,保障安全合规性。比如在金融领域,可以建立金融业联邦迁移学习联盟。


通信世界网版权及免责声明:
1、凡本网注明“来源:通信世界全媒体”及标有原创的所有作品,版权均属于通信世界网。未经允许禁止转载、摘编及镜像,违者必究。对于经过授权可以转载我方内容的单位,也必须保持转载文章、图像、音视频的完整性,并完整标注作者信息和本站来源。
2、凡本网注明“来源:XXX(非通信世界网)”的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。
3、如因作品内容、版权和其它问题需要同本网联系的,请在相关作品刊发之日起30日内进行。
发表评论请先登录
...
热点文章
    暂无内容